Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА

(19) RU (11) 2 558 525 (13) C1

Статус: может прекратить свое действие (последнее изменение статуса: 07.12.2016)

(72) Автор(ы):
Носачев Леонид Васильевич (RU)

(73) Патентообладатель(и):
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Адрес для переписки:
140180, Московская обл., г. Жуковский, ул. Жуковского, 1, ФГУП "ЦАГИ", отдел 80

(54) УСТРОЙСТВО АКТИВНОЙ ТЕПЛОЗАЩИТЫ И МОДУЛЯЦИИ АЭРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ГИПЕРЗВУКОВОГО БПЛА

(57) Реферат:


Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит теплоноситель и средства формирования теплозащитного слоя. Внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора. Открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку. На внешней поверхности резонатора установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок. Достигается снижение пиковые тепловые нагрузки на элементы конструкции гиперзвукового БПЛА и повышение топливной эффективности его силовой установки.



Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА).

Аналогами предлагаемого устройства являются пассивные средства защиты теплонапряженных элементов конструкции летательного аппарата с помощью высокотемпературных покрытий (Проблемы механики и теплообмена в космической технике. Под ред. Белоцерковского О.М. М.: Машиностроение, 1982; патент США №6497390, 24.12.2002; патент RU №2383476С1, МПК B64G 1/58, B64G 1/62, 25.12.2008).
Известен способ неразрушающейся тепловой защиты передней кромки летательного аппарата от воздействия интенсивного теплового потока и передняя кромка летательного аппарата с неразрушающейся тепловой защитой (патент RU №2149808 С1, МПК B64G 1/58, В64С 1/38, 1/36, 08.06.1999), включающая оболочку с минимальным аэродинамическим сопротивлением и средства транспортировки энергии от передней кромки, воспринимающей пиковые тепловые нагрузки.
Недостатком известного технического решения является дополнительное аэродинамическое сопротивление затупленной передней кромки с оболочкой при гиперзвуковых скоростях полета.
Наиболее близким из технических решений к предлагаемому устройству активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА является принятое за прототип устройство, реализующее способ теплозащиты и модуляции аэродинамического сопротивления объекта, спускаемого с космического аппарата (патент RU №2219110 С1, МПК B64G 1/58, С09Д 1/02, В64С 1/38, 31.05.2002), содержащее теплоноситель и средства формирования теплозащитного слоя.
Недостатком известного технического решения является повышенное энергопотребление.
Задачей заявленного изобретения является создание эффективной теплозащиты теплонапряженной передней кромки летательного аппарата и модуляции его аэродинамического сопротивления на режимах гиперзвукового полета в атмосфере.
Технический результат, получаемый при осуществлении изобретения, заключается в снижении пиковых тепловых нагрузок на элементы конструкции гиперзвукового БПЛА и повышение топливной эффективности его силовой установки.
Решение поставленной задачи и технический результат достигаются тем, что в устройстве активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА, содержащем теплоноситель и средства формирования теплозащитного слоя, соединенные с системой управления БПЛА, внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки по оси БПЛА размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора, причем открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку, на внешней поверхности резонатора на его боковых стенках по окружности установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок.
Схема устройства активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА показана на фигуре 1. В носовой части 4 гиперзвукового БПЛА 1 между его передней кромкой 2 и камерой сгорания 11 силовой установки 12 по оси БПЛА размещен цилиндрический газоструйный резонатор 7 с системой управляемых клапанов 6, расположенных на боковой стенке резонатора 7, причем открытый вход 8 резонатора 7 совмещен с передней кромкой 2 БПЛА и направлен навстречу набегающему потоку. На внешней поверхности резонатора 7 на его боковых стенках по окружности установлены контейнер 3 с теплоносителем в виде метангидрата и преобразователь 5 метангидрата в смесь паров воды и метана. Кроме того, на фигуре 1 обозначено: 9-система управления БПЛА, 10-топливо.
Работает устройство следующим образом.
При движении гиперзвукового БПЛА 1 в атмосфере на него набегает поток воздуха со скоростью V0, формируется головная ударная волна и температура торможения потока достигает порядка 2000К. На элементы конструкции летательного аппарата, и в первую очередь на его переднюю кромку 2, поступает тепловой поток, который может повредить конструкцию или изменить конфигурацию передней кромки 2, определяющей аэродинамические характеристики БПЛА.
С целью охлаждения передней кромки 2 БПЛА перед ней с помощью преобразователя 5 через систему управляемых клапанов 6, расположенных на боковой стенке газоструйного резонатора 7, создают защитный слой из продуктов разложения метангидрата в виде смеси паров воды и метана. Полученную смесь направляют в газоструйный резонатор 7, в котором пары воды и метана под давлением в пульсирующем режиме с частотой более 100 Гц через открытый вход 8 газоструйного резонатора вводят навстречу набегающему потоку. В результате формируется защитный слой, экранирующий переднюю кромку БПЛА от пиковых тепловых нагрузок. Экспериментально установлено, что для полной диссоциации одного моля водяного пара требуется более 242 кДж. Диссоциация метана в присутствии паров воды также протекает с интенсивным поглощением энергии и хорошим выходом водорода, атомарного углерода, ацетилена и других компонентов с высокой энтальпией, которые могут эффективно быть использованы в процессе горения топливовоздушной смеси в камере сгорания 11 силовой установки 12 гиперзвукового БПЛА 1.
Ввод смеси паров воды и метана газоструйным резонатором 7 навстречу набегающему потоку в пульсирующем режиме вызывает также модуляцию аэродинамического сопротивления БПЛА и способствует устойчивости пограничного слоя БПЛА.
Таким образом, предлагаемое изобретение позволяет:
- создать эффективную теплозащиту теплонапряженной передней кромки гиперзвукового БПЛА за счет снижения пиковых тепловых нагрузок на элементы конструкции БПЛА с формированием защитного слоя;
- улучшить устойчивость пограничного слоя за счет создания модуляции аэродинамического сопротивления БПЛА при вводе в набегающий высокоскоростной поток с помощью газоструйного резонатора паров воды и метана под давлением в пульсирующем режиме;
- организовать поглощение энергии набегающего потока при диссоциации молекул воды, метана, а также синтезе ацетилена и других компонентов;
- повысить топливную эффективность БПЛА и улучшить его массогабаритные характеристики за счет использования полученных продуктов разложения метангидрата с добавленной энтальпией в камере сгорания силовой установки гиперзвукового БПЛА.
В настоящее время принято решение о создании опытного образца устройства (демонстратора технологии).




Способ реализации описан в патенте (19) RU (11) 2 559 182 (13) C1



Слово "БПЛА" тут в заблуждение вводить не должно...
И это насколько я понял не единственный способ преодоления технического порога с пиковыми нагрузками по кромке, но второй способ сложнее...

Комментариев нет:

Отправить комментарий

Ярлыки

Поиск по этому блогу