суббота, 30 сентября 2017 г.

Блок ретранслятора радиогидроакустического буя

РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(19)
 
RU
 
(11)
 
(13)
 
U1
(51) МПК
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
Пошлина:
прекратил действие, но может быть восстановлен (последнее изменение статуса: 07.07.2017)
учтена за 1 год с 11.09.2015 по 11.09.2016
(21)(22) Заявка: 2015138754/28, 11.09.2015
(24) Дата начала отсчета срока действия патента:
11.09.2015
Приоритет(ы):
(22) Дата подачи заявки: 11.09.2015
(45) Опубликовано: 10.03.2016 Бюл. № 7
Адрес для переписки:
197136, Санкт-Петербург, а/я 73, пат. пов. Мус Галина Петровна, рег. N 83
(72) Автор(ы):
Горбачев Игорь Валентинович (RU),
Севбо Владимир Юрьевич (RU)
(73) Патентообладатель(и):
Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)
(54) БЛОК РЕТРАНСЛЯТОРА РАДИОГИДРОАКУСТИЧЕСКОГО БУЯ
(57) Реферат:
Полезная модель относится к области гидроакустики, а именно к применяемым в морской авиации радиотехническим средствам передачи сигналов гидроакустической обстановки, и может быть использована в качестве радиоэлектронного ретрансляционного блока, размещаемого внутри герметичного корпуса всплывающего радиогидроакустического буя (радиобуя, РГБ) - автономной автоматической гидроакустической станции системы освещения подводной и надводной обстановки.

Блок ретранслятора радиогидроакустического буя, включает модуль приема координатно-временных параметров, модуль передачи данных - 4, антенный модуль, и модуль электропитания с аккумуляторной батареей и дополнительно микропроцессорный радиомодуль (МПРМ) - 1, содержащий связанные между собой электрическими связями программируемый микроконтроллер и радиомодем. Микропроцессорный радиомодуль (МПРМ) связан по двухпроводной линии электропитания постоянного тока с подводным герметичным модулем автоматической радиогидроакустической станции, антенный модуль (МАК) - 2 выполненный в виде единого комбинированного мультидиапазонного антенно-фидерного устройства, обеспечивает работу приемо-передатчика на ультракоротких волнах и прием сигналов глобальных навигационных систем ГЛОНАСС и GPS, при этом антенный модуль (МАК) подключен ко входу модуля приема координатно-временных параметров - 3 и к выходу микропроцессорного радиомодуля (МПРМ) - 1, к которому, в свою очередь, подключен блок электропитания, выполненный в виде модуля гибридного электропитания (МГЭП) - 5 с возможностью подключения возобновляемых источников энергии.
Преимуществом разработанного объекта является значительное улучшение тактико-технических характеристик реализуемой на базе предлагаемой полезной модели системы освещения подводной и надводной обстановки.

Полезная модель относится к области гидроакустики, а именно к применяемым в морской авиации радиотехническим средствам передачи сигналов гидроакустической обстановки, и может быть использована в качестве радиоэлектронного ретрансляционного блока, размещаемого внутри герметичного корпуса всплывающего радиогидроакустического буя (радиобуя, РГБ) - автономной автоматической гидроакустической станции системы освещения подводной и надводной обстановки.
Из патента на ПМ №115929 известен «ГИДРОАКУСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ДИСТАНЦИОННОГО МОНИТОРИНГА ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ В МЕЛКОВОДНЫХ АКВАТОРИЯХ», в котором использован радиогидрофизический буй, снабженный донным якорем и включающий в себя радиопередатчик, соединенный через блок АЦП с приемным гидрофоном, блок GPS-ГЛОНАСС позиционирования и аккумуляторный блок автономного питания.
Современные РГБ, в частности, военного назначения, представляют собой сложные электронные устройства, обеспечивающие гибкость поисковой работы в различных тактических ситуациях благодаря широкому спектру возможностей от электронного переключения частоты радиоканала, времени работы радиобуя и изменения глубины погружения гидрофонов до выбора схемы постановки барьеров или полей. В настоящее время усилия инженеров-разработчиков РГБ, направленные на совершенствование их технических характеристик, сосредоточены на решении следующих ключевых задач [1-5]:
- развитие средств управления РГБ на основе программируемых контроллеров и средств дистанционного управления по радиокомандам;
- развитие средств и методов цифровой передачи сигнала на носитель (авиационное средство);
- увеличение продолжительности работы РГБ за счет применения аккумуляторных батарей новых типов и использования возобновляемых источников энергии;
- повышение точности определения местоположения РГБ;
- совершенствование бортовых процессоров и аппаратуры обработки гидроакустического сигнала;
- совершенствование гидроакустического антенного оборудования;
- снижение массы и габаритных размеров РГБ.
В качестве наиболее близкого по функциональным и техническим характеристикам к предлагаемой полезной модели современного прототипа взят блок ретранслятора пассивного РГБ AN/SSQ-53F из состава системы DIFAR (Directional Frequency Analysis and Recording) ВМС США, являющегося функционально комбинацией радиобуя направленного действия AN/SSQ-53D системы DIFAR и радиобуя ненаправленного действия с калибровкой гидрофонов AN/SSQ-57 системы LOFAR (Low Frequency Analysis and Recording). Информация о прототипе представлена в [www.sonobuoytechsystems.com/pdfs/Q53F2-2-10.pdf].
Блок ретранслятора указанного радиогидроакустического буя включает в себя микроконтроллер (МК), модуль приема координатно-временных параметров (МКВП), приемо-передающее устройство (ППУ), модуль передачи данных (МПД), антенные модули (А2 и А1) и модуль электропитания (МЭП) с аккумуляторной батареей (АБ).
Встроенный программируемый микроконтроллер (МК) управляет работой блока ретранслятора РГБ. Гидроакустический сигнал, принятый и усиленный аппаратурой подводного герметичного модуля, по двухпроводной линии поступает в модуль передачи данных (МПД), а затем в частотный модулятор приемо-передающего устройства (ППУ), содержащего также тракт радиочастоты и управляемый синтезатор сетки частот несущих, где модулируется одна из 96 предварительно или после приводнения выбранных оператором несущих в диапазоне 136.000-173.500 МГц, после чего модулированный гидроакустической информацией сигнал излучается в эфир ультракоротковолновой антенной (А2), встроенная система позиционирования использует координатно-временные данные, получаемые от глобальной навигационной системы GPS с помощью приемной антенны диапазона 1.575 ГГц (А1) и модуля приема координатно-временных параметров (МКВП). Блок ретранслятора поддерживает командный интерфейс с оператором по радиоканалу, детектируя в ППУ принимаемые антенной А2 радиосигналы команд и передавая их на исполнение в МК, обеспечивает мощность излучения радиопередатчика не менее 1 Вт и максимальное время функционирования не более 8 часов.
Рассмотренный прототип имеет следующие недостатки:
- достаточно короткое «время жизни» РГБ AN/SSQ-53F накладывает существенные ограничения на продолжительность поисковой работы и площадь контролируемой акватории;
- система позиционирования, а именно модуль МКВП, использует только сигнал системы GPS;
- в связи с тем, что протяженность зоны уверенного приема для диапазона УКВ, используемого ретранслятором радиобуя, определяется выполнением условия прямой видимости для излучателя и приемника в силу особенностей распространения этих радиоволн, контакт с носителем может осуществляться только облетным методом, который обеспечивает непосредственное выполнение данного условия для носителя и каждого конкретного радиобуя.
От указанных недостатков свободна предлагаемая полезная модель, задачей которой является разработка радиоэлектронного блока радиобуя, имеющего расширенные технические возможности и низкое энергопотребление.
Техническим результатом от использования предлагаемой полезной модели является: повышение надежности и точности в определении местонахождения объектов и увеличение жизненного цикла РГБ.
Задача решается, а технический результат достигается тем, что блок ретранслятора радиогидроакустического буя, включающий модуль приема координатно-временных параметров, модуль передачи данных по двухпроводной линии электропитания постоянного тока, антенный модуль, и модуль электропитания с аккумуляторной батареей, дополнительно включает микропроцессорный радиомодуль, содержащий связанные между собой электрическими связями программируемый микроконтроллер и радиомодем. Микропроцессорный радиомодуль связан по двухпроводной линии электропитания постоянного тока с подводным герметичным модулем автоматической радиогидроакустической станции, антенный модуль выполнен в виде единого комбинированного мультидиапазонного антенно-фидерного устройства, обеспечивающего работу приемо-передатчика на ультракоротких волнах и прием сигналов глобальных навигационных систем ГЛОНАСС и GPS, при этом антенный модуль подключен ко входу модуля приема координатно-временных параметров и к выходу микропроцессорного радиомодуля, к которому, в свою очередь, подключен блок электропитания, выполненный в виде модуля гибридного электропитания с возможностью подключения возобновляемых источников энергии.
Микропроцессорный радиомодуль осуществляет обмен данными по радиоканалу с другими абонентами (носителем и радиобуями), организует обмен данными по двухпроводной линии электропитания постоянного тока с входящим в состав автоматической радиогидроакустической станции подводным герметичным модулем, осуществляет прием координатно-временных навигационных данных за счет подключенного к нему модуля приема координатно-временных параметров, а также обеспечивает управление системой электропитания для поддержки режима максимального энергосбережения для аккумуляторной батареи за счет того, что упомянутый микропроцессорный радиомодуль связан с модулем электропитания РГБ.
Принципиальным отличием от прототипа является применение микропроцессорного радиомодуля, поддерживающего технологию беспроводной самоорганизующейся сети для организации передачи данных по радиоканалу, и антенного модуля, который выполнен в виде единого комбинированного мультидиапазонного антенно-фидерного устройства обеспечивающего и работу связевого радиоканала, и прием данных одновременно от двух глобальных спутниковых навигационных систем ГЛОНАСС и GPS, а также использование в системе электропитания, помимо аккумуляторной батареи, модуля гибридного электропитания, рассчитанного на подключение преобразователей солнечной энергии и энергии других возобновляемых источников, что обеспечивает достижение технического результата повышение надежности и точности в определении местонахождения объектов и увеличение жизненного цикла РГБ.
Сущность заявляемой полезной модели поясняется представленной на рисунке 1 ее обобщенной структурной схемой, где:
1 - микропроцессорный радиомодуль (МПРМ), который связан используемой как канал передачи данных линией электропитания с подводным герметичным модулем автоматической радиогидроакустической станции (на схеме не показан);
2 - антенный модуль, выполненный в виде единого комбинированного мультидиапазонного антенно-фидерного устройства (МАК),
3 - модуль приема координатно-временных параметров (МКВП),
4 - модуль передачи данных по двухпроводной линии электропитания постоянного тока (МПД),
5 - модуль гибридного электропитания (МГЭП);
6 - аккумуляторная батарея (АБ).
Устройство работает следующим образом. Радиомодем, интегрированный в МПРМ (1), через антенную компоненту А1 мультидиапазонного комбинированного активного антенного модуля 2 осуществляет поддержку работы дуплексного канала радиосвязи с другими абонентами самоорганизующейся беспроводной сети (носителем и радиобуями) на основе проприетарного криптозащищенного сетевого протокола. Микроконтроллер, интегрированный в МПРМ (1), управляет потоками информации и буферизацией данных, передаваемых по радиоканалу, по каналу связи с модулем приема координатно-временных параметров 3, к которому подключена антенная компонента А2, обеспечивающая прием сигналов навигационных систем ГЛОНАСС (1.598-1.606 ГГц) и GPS (1.575 ГГц), и подводным герметичным модулем (На схеме не показан) через модуль модема передачи данных по двухпроводной линии электропитания постоянного тока 4. Также интегрированный в МПРМ (1) микроконтроллер управляет всей системой энергоснабжения РГБ через модуль гибридного электропитания 5, который обеспечивает переключение режимов работы системы электропитания в зависимости от выполняемых РГБ текущих задач с целью поддержки условий максимально возможного энергосбережения для аккумуляторной батареи 6, а также обеспечивает автоматический заряд аккумулятора от преобразователей возобновляемых источников энергии -солнечной батареи и др. источников.
Таким образом, с помощью предлагаемого блока ретранслятора РГБ достигается эффективное решение стоящих перед РГБ задач при оптимальном его построении в системе РГБ - носитель. Заявляемая полезная модель блока ретранслятора РГБ может быть использована в качестве основы для построения автономных автоматических многофункциональных радиогидроакустических станций с пролонгированным жизненным циклом для формирования функционирующей как самоорганизующаяся сеть мобильной оперативно-развертываемой мультипозиционной и произвольно наращиваемой в требуемой конфигурации сетецентрической гидроакустической системы освещения подводной и надводной обстановки.
Преимуществом разработанного объекта является значительное улучшение тактико-технических характеристик реализуемой на базе предлагаемой полезной модели системы освещения подводной и надводной обстановки.
ИСТОЧНИКИ ИНФОРМАЦИИ
1 А. Брюхов, А. Бородавкин. Авиационные радиогидроакустические буи. Зарубежное военное обозрение №6, 1987.
2 А. Бородавкин. Вертолетные системы РГБ. Зарубежное военное обозрение №10, 1990.
3 А. Бородавкин. Совершенствование систем РГБ в ВМС зарубежных стран. Зарубежное военное обозрение №8, 1993.
4 Roger A. Holler. The evolution of the sonobuoy from World War II to the Cold War. Navmar Applied Sciences Corporation Warminster, PA 18974 (Received November 5, 2013).
5 Christopher W. Miller Anurag, Kumar. San Clemente Island Undersea Range Acoustic Experiment, July 2002. Naval Postgraduate School. Monterey, California, November 2003.
Формула полезной модели

Блок ретранслятора радиогидроакустического буя, включающий модуль приема координатно-временных параметров, модуль передачи данных, антенный модуль и модуль электропитания с аккумуляторной батареей, отличающийся тем, что блок ретранслятора дополнительно включает микропроцессорный радиомодуль, содержащий связанные посредством электрических связей программируемый микроконтроллер и радиомодем, упомянутый микропроцессорный радиомодуль связан двухпроводной линией электропитания постоянного тока, используемой также как канал передачи данных, с подводным герметичным модулем автоматической радиогидроакустической станции, антенный модуль выполнен в виде единого комбинированного мультидиапазонного антенно-фидерного устройства, обеспечивающего работу приемопередатчика на ультракоротких волнах и прием сигналов глобальных навигационных систем ГЛОНАСС и GPS, при этом антенный модуль подключен ко входу модуля приема координатно-временных параметров и к выходу упомянутого микропроцессорного радиомодуля, к которому подключен модуль электропитания, выполненный в виде модуля гибридного электропитания с возможностью подключения возобновляемых источников энергии.

Комментариев нет:

Отправить комментарий

Ярлыки

Поиск по этому блогу